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SOLUTION OF ONE PROBLEM ON OPTIMUM  GAS WELL 

OPERATION CONTROL 

 
 

 

Abstract.The article is devoted to the numerical solution of the problem of 
optimum managing gas well operation modes. The solution to the problem is based 

on the approximation of a partial differential equation by a system of ordinary 

differential equations. Particular attention is paid to the numerical solution of the 
optimal control problem associated with these systems based on the Pontryagin’s 

maximum principle. To solve the problem, a linearization method and implicit 

finite difference schemes for solving a nonlinear equation are proposed. The 
calculation of technological modes of wells operation by adjusting the bottomhole 

pressure within certain limits is based on the results of theoretical and 

experimental studies. 

Keywords: Technological mode, Bottomhole  pressure, the method of 
straight lines, Gradient projection method.  
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1. Introduction 
 

In modern conditions characterized by rising energy prices, the efficiency 

and cost-effectiveness of the operation of gas fields and underground gas storages 

are important factors in reducing costs and increasing the reliability of gas supplies 
to consumers. An important scientific and technical problem of field development 

is to ensure high levels and rates of hydrocarbon production with the most 

complete extraction from the bowels, as well as the high technical and economic 
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performance of gas-producing enterprises. Therefore, improving the technology for 
developing gas and gas condensate fields is an urgent and important task for the oil 

and gas industry. 

The goal of this work is to improve the quality of numerical solutions to 
optimal control problems for nonlinear systems with distributed parameters 

through the Pontryagin’s maximum principle. This goal is achieved without the 

need to consider the conjugate boundary value problem for partial differential 

equations. 
All of the above determined the structure of the work, which consists of six 

main parts. The introduction substantiates the relevance of the topic and formulates 

the objectives of the study. After the introduction, the methodology describes the 
applied research methods, substantiates the scientific novelty and practical value of 

solving the problem under consideration. Further, the work contains a review that 

surveys the literature in the chosen area of study. The main part of the study 
includes the theoretical and practical part of constructing the mathematical 

apparatus of the optimal control problem and determining the technological mode 

of gas well operation. The study is completed by discussion and conclusion, 

constituting findings on the research. 
 

2. Research methodology 
 

Many articles are devoted to the optimal control of wells’ technological 
regimes. The scientific novelty of this work lies in the development and 

justification of a method on solving the optimal control problem for systems with 

distributed parameters. In the problem considered, the technological mode of 
operation of gas wells is determined by regulating the bottomhole pressure within 

certain limits. The proposed approximate solution of the posed boundary value 

problem is found using the straight-line method. 

The purpose of the paper is to prove convergence on functional for which 
the approximate optimal control is found minimizing. The gradient projection 

method is used with a special choice of step, and there is no tendency to “hopper 

agitation”. In a short time, a convergent minimizing sequence is obtained in the 
control space. 

When performing the work, methods of the theory of optimal control and 

linear programming, various linearization methods, and implicit finite difference 

schemes for solving the nonlinear equation are used. The experimental material is 
based on calculations performed using actual data on gas storage facilities, as well 

as on the experience of implementing technical solutions developed and justified in 

this work. 
The validity and reliability of the results of the manuscript are ensured by 

the correctness and completeness of the models used, the convergence of 

computational algorithms, the results of testing algorithms and programs, and 
experimental studies. 
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3. Literature review 
 

As part of gas production technology, gas wells are the most numerous 
objects. Complicating conditions for gas production, increasing requirements for 

the quality of gas field management, improving field development indicators have 

led to the urgent need for more active implementation of automated gas well 
management as part of information-measuring and control systems. 

However, research studies have not yet sufficiently reflected the decision-

making methods for managing gas wells. The complexity of this task lies not only 

in a large number of wells at one control object but also in the interdependence of 
the wells’ operation. This interdependence remains notoriously complex: the 

interaction between the wells occurs both through the gas collection and 

transportation system, and through the gas-bearing stratum. Also, there are factors 
of uncertainty in the parameters of these objects. Note that after the emergence of 

the famous Pontryagin’s maximum principle [14] optimization methods have found 

wide applications in modelling and solving various problems of developing oil and 

gas fields.  
To obtain the characteristics of the regimes for maintaining the maximum 

allowable pressure gradient on the walls of the wells, Zakirov [23] uses two 

equations - the nonlinear law of resistance for the filtration rate and the equation of 
gas inflow to the bottom of the well with a nonlinear law of resistance.  

In the paper [8] the problem of finding a rational option for the 

development of a gas field is considered and an algorithm for its solution using the 
gradient method is proposed. An example of solving the problem for a typical gas 

field in Western Siberia is given.The article [3] considers the task of determining 

the technological modes of well operation. According to the authors, these modes 

provide optimal technical and economic indicators of development and the most 
complete extraction of oil or gas from the bowels. The problem with the condition 

of two-phase filtration is reduced to the task of optimal control of filtration flows in 

the reservoir.In survey paper [17] the problem of mathematical modelling of the 
process of extracting oil from heterogeneous formations and methods of solution 

are considered. The task of optimal regulation of the oil recovery process is posed 

and an assessment of the main factors affecting this process is given. In the 
manuscript [1] the problem of optimal placement of oil reservoir wells and flow 

rate management is investigated. Mathematically, this problem is a parametric task 

of optimal control of a distributed system concentrated by sources, described by 

differential equations in partial derivatives. 
In his next work, Zakirov [24] considers the problem of maximizing oil 

production from a multilayer field with a single grid of production wells and 

separate grids of injection wells. To solve the problem, methods of the theory of 
optimal control are used. In the paper [16] the model of the functioning of a gas 

field with interrelated wells is investigated. The optimal control problem is posed 

and solved on an infinite interval. Tugov in [20] describes the search for the 
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optimal control action on the oil mixture in a primary preparation separation unit 
using the acoustic treatment. The application of the maximum principle, which 

allows determining the values of the control actions on the oil mixture, is 

considered, experiments to study the effect of ultrasonic exposure on the separation 
process are conducted under laboratory conditions. 

It should be noted that in the two last decades, completely new approaches 

based on the use of genetic algorithms and neural networks have appeared to solve 

optimization problems associated with the design and development of gas and oil 
fields. For example, a study [22] aims to represent the body of knowledge on 

evolutionary computing used in the field of exploration and production in the oil 

and gas industry. It also describes the structure of evolutionary engineering systems 
in determining reservoir characteristics. In the manuscript [25] many various 

methods are compared with work of genetic algorithms in the field we are 

studying. The authors investigate the ant colony optimization (ACO) method, 
which has shown excellent properties in optimizing water distribution networks. 

The study [12] presents a new methodology for predicting fluid flow behavior 

using the artificial neural network. The developed methodology allows predicting a 

wide variety of cost items, ranging from the pressure at the inlet to the throttle up 
to the size of the throttle. The accuracy of the developed model is proved by 

empirical correlations. 

Soemardan in [18] develops economics-mathematical model for 
optimizing gas production on the example of research of the Matindok field. The 

authors analyse marginal costs in determining the optimal level of gas production. 

The results obtained show that the optimal resource extraction rate is in direct 

proportion to its price and transportation time.Namdar in [13] claims that the 
increased speed and accuracy in solving gas distribution optimization problems are 

determined by the nature of the allocation of either form of reef structures and the 

structural-tectonic factor, including the presence of high-amplitude shafts and 
flexures. The optimization solution consists of two successive stages: (1) fitting the 

gas lift productivity curve (gas lift modelling) and (2) optimizing the gas 

distribution between the wells. The results obtained allow substantiating the 
optimal technology for conducting research and interpreting the results to diagnose 

the proportion of cracks in the tributary with the goal of uniform reservoir 

development. Janiga in[6] describes the non-uniformity of pressure reduction in 

interlayers with different filtration-capacitive properties during the development of 
a gas condensate field. The result of an uneven pressure reduction in the reservoir 

is the occurrence of interstratal flows of the gas-condensate mixture even in the 

presence of a slight hydrodynamic contact between the layers. The proposed 
approach to the restoration of reservoir properties in the interwell space using 

reference points has been tested on synthetic models. It is shown that the 

application of the proposed approach allows saving geological information in the 
process of refining the model. 
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The article [4] presents the modern achievements of gas lift technology and 
promising directions for the development of this method for well operation. The 

authors consider the aspects of establishing the necessary technological mode of 

operation of the wells, taking into account the current state of the reservoir-well 
system, as well as the planning of geological and technical measures aimed at 

intensifying the selection of reservoir fluids. To analyse the information, physical 

and mathematical models are used in the online mode; this makes it possible to 

identify the dynamic features of changes in the analysed parameters and the 
presence of periodic self-organizing processes. 

Purification of natural and other gases from hydrogen sulphide can be 

carried out by different methods. The choice of the process of natural gas 
purification from sulphur compounds in each case depends on many factors, the 

main of which are: the composition and parameters of the feed gas, the required 

degree of purification and the use of commercial gas, the availability and 
parameters of energy resources, production waste, etc. An analysis of world 

practice accumulated in the field of natural gas purification shows that absorption 

processes for processing large gas flows using chemical and physical absorbents 

and their combinations are the main ones. Shang in[15] tests a stationary 
simulation modelling the process of natural gas purification from high sulphur 

content using ProMax. Using the back propagation neural network based on the 

analysis of the integrated distribution of energy consumption, seven main operating 
parameters of the cleaning process are determined. The article [2] uses the PSA - 

particle swarm algorithm to determine the intervals for filling wells between 

sampling points in a synthetic reservoir with constant fluid measurement. Real-

time image registration provides the necessary information about the structure of 
the collector and, ultimately, helps to keep the trajectory in the most productive 

zone. The objective function in this study is the net present value of the asset 

(reservoir). The effective Monte-Carlo method presented in the article [7] is an 
optimization plan of the gas condensate field development, taking into account the 

distribution of fluid backstops in terms of reliability, and allows minimizing 

geological risks and uncertainties during well construction. The work studies the 
solubility kinetics of various types of clays in acidic compositions and their 

components depending on the concentration of reagents, temperature, and duration 

of the experiment. 

Despite a lot of research in this direction, the known methods are not 
adapted to develop optimal solutions for managing gas wells in real-time. Thus, the 

control and management of gas wells, taking into account the interaction of wells 

with other elements of the gas production technological complex in the face of 
parameters’ uncertainty, remains an urgent task. 

 

4. Problem statement 
 

The choosing technological mode of gas well operation is one of the most 

important decisions made during the mining and management of field 
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development. Generally, the technological regime of well operation is understood 

as the regulation of the well  flowing 𝑞(𝑡) or pressure  𝑝𝑐(𝑡) in the bottomhole 

zone.  Conditions ensuring compliance with the rules relating protection of mineral 

resources and trouble-free operation of wells are supported with their help. One of 
the simplest technological modes of gas well operation is the maximum allowable 

depression mode. With growing depression, the flowing of the production well 

increases. This mode is mathematically written as𝑝п(𝑡) −  𝑝𝑐(𝑡) = 𝛿, where 𝑝п(𝑡) 

is the reservoir pressure in the zone of some well at time 𝑡;  𝑝𝑐(𝑡) is the bottomhole 

pressure in the same well at time 𝑡; 𝛿 is the allowable depression on the reservoir.  

In this article, the technological mode of gas well operation is determined 

by adjusting the bottomhole pressure  𝑝𝑐(𝑡) within certain limits. This task can be 

attributed to the class of optimal control problems for systems with distributed 
parameters. Relatively dimensionless quantities, it can be formulated as follows: 

operate the pressure  𝑝𝑐(𝑡), satisfying the inequality  

 

0 < 𝑝1 ≤ 𝑝𝑐(𝑡) ≤ 𝑝2 ≤ 1,                                 (1) 

 

in the time interval 0 ≤ 𝑡 ≤ 𝑇,  where 𝑝1 and 𝑝2 are constants defined on the basis 

of technical and economic calculations so that the amount of gas produced from 

wells minimally deviates from its previously planned value 𝑞∗(𝑡). A quadratic 

functional is taken as a measure of such a deviation 

 

                                                   𝐹 =
1

2
∫ [

𝜕𝑝2(0,𝑡)

𝜕𝑥
− 𝑞∗(𝑡) ]

2

𝑑𝑡
𝑇

0
                            (2) 

 

Here 𝑝(𝑥, 𝑡) describes the distribution of gas pressure in the “reservoir” 

0 ≤ 𝑥 ≤ 1, which, with the linear law of filtration, is a solution of the non-linear 

Leibenzon equation [9]: 
𝜕𝑝

   𝜕𝑡
=

1

2
∙

𝜕2𝑝2

𝜕𝑥2  ,                                                                          (3) 

 

under the following boundary conditions 

 

𝑝(𝑥, 0) = const = 1,   0 ≤ 𝑥 ≤ 1 ,                                        (4) 

𝑝(0, 𝑡) =  𝑝𝑐(𝑡),   
𝜕𝑝(1,𝑡)

𝜕𝑥
= 0,   0 < 𝑡 ≤ 𝑇,                           (5) 

 

where  𝑝𝑐(𝑡) is a piecewise continuous function in the interval 0 ≤ 𝑡 ≤ 𝑇, and 

conditions (4) and the first condition in (5) are consistent:  𝑝𝑐(0) = 1.   

Condition (4) is the initial one and means that at the initial moment of time 
the distribution law of the reservoir pressure is known. The second condition in (5) 

indicates the impermeability of the external boundary of the reservoir. Note that 

when solving some filtration problems at the outer boundary 𝑥 = 1, the reservoir 
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pressure value 𝑝п(𝑡) is set, that is, the second condition in (5) can be replaced by 

the condition 𝑝(1, 𝑡) = 𝑝п(𝑡). Consider the differential equation 

 

𝑑𝑦

𝑑𝑡
=

1

2
[

𝜕𝑝2(0,𝑡)

𝜕𝑥
− 𝑞∗(𝑡) ]

2

,      𝑦(0) = 0                                           (6) 

 

related to functional (2). Then functional (2) is written as 

 

             𝐹 = 𝑦(𝑇).                                                                                               (7)                                                                                                                    

 

Thus, problem (1) – (5) is narrowed down to the problem of systems’ 

optimal control, the behavior of which is described by a set of differential 
equations in partial and ordinary derivatives. We note that optimal control 

problems associated with a more general boundary-value problem similar to (3) – 

(6) were first considered by Egorov [3]in the mid-60s of the last century, and the 
early 70s and subsequent years were the subject of research by many Russian and 

foreign authors. Further, as such practically important problems appear the 

activation of research in this direction is reflected in [19]. In the paper [5]the 

control problem of the so-called noisy dynamic systems associated with obtaining 
an assessment of the state and parameters of the control object is considered. In the 

manuscript [3] the problem of dumping the oscillations of a system described by a 

combination of a wave equation and an ordinary differential equation of the second 
order is considered under the assumption that the control function and the object 

with lumped parameters act, respectively, on the left and right ends of the object 

with distributed parameters. The functions of the states of the system are connected 

through the boundary conditions for the wave equation. To solve the problem, the 
d'Alembert formula was used and, applying the method of straight lines, finite-

dimensional approximations of the problem were constructed. Teymurov in [19] 

investigated the problem of optimal control of processes described by a 
combination of parabolic type equations and ordinary differential equations with 

controls of moving sources. The existence and uniqueness theorem of the solution 

was proved, the necessary optimality conditions were obtained in the form of point 
and integral maximum principles. 

It is easy to see that when solving problems related to regulation in a given 

range of well production, ensuring depletion of a gas reservoir by a given point in 

time, the first condition in (5) should be replaced by the condition 

 

𝜕𝑝2(0,𝑡)

𝜕𝑥
= 𝑞(𝑡), 0 < 𝑞1 ≤ 𝑞(𝑡) ≤ 𝑞2,   0 < 𝑡 ≤ 𝑇,                         (8) 

 

and instead of (2) minimize the functional 

 

𝐹 =
1

2
∫ [ 𝑝(𝑥, 𝑇) − 𝑝∗(𝑥)]2𝑑𝑥

1

0
,                                                      (9) 
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where 𝑝∗(𝑥) is the gas pressure over the reservoir, specified on the basis of 

technological considerations, 𝑞1, 𝑞2 are constant values. Condition (8) shows that a 

well located at the “point” 𝑥 = 0 is operated with a production rate 𝑞(𝑡). A 

numerical solution to this problem was obtained in [11]. Instead of (2) we consider 

minimization of the functional 

 

𝐹 =
1

2
∫ [ 𝑝(0, 𝑡) − 𝑝з

∗(𝑡) − 𝛿 ]2𝑑𝑥
𝑇

0
,                        (10) 

 

taking into account  phase restrictions 

 𝑝(0, 𝑡) > 𝑝з
∗(𝑡),                                       (11) 

 

where 𝑝з
∗(𝑡) is the specified pressure in the bottomhole zone of the well, and 𝛿 is 

the allowable depression on the formation and is a given number. Then we have to 

deal with the control task of choosing the technological mode of operation of gas 
wells that provides the maximum allowable depression on the formation [24]. 

 

5. Numerical solution of problem (1), (3) – (7) 

 

Due to the impossibility of obtaining an analytical solution of the boundary 

value problem (3) – (6), although in [9] various linearization methods and implicit 

finite-difference schemes for solving the nonlinear equation (3) are proposed. An 
approximate solution to the boundary value problem (3) – (6) will be sought by the 

straight line method, replacing it at the grid nodes of the lines  𝑥𝑖 = 𝑖ℎ, 𝑖 =
1,2, … , 𝑛, (𝑛 + 1)ℎ = 1,  𝑥0 = 0,  𝑥𝑛+1 = 1   by the system of differential-
difference equations:  

 
𝑑𝑧𝑖

𝑑𝑡
=

1

2ℎ2
[𝑧𝑖−1

2 − 2𝑧𝑖
2 + 𝑧𝑖+1

2 ],   𝑖 = 1,2, … , 𝑛, 𝑧0 = 𝑝𝑐(𝑡),   𝑧𝑛+1 = 𝑧𝑛,      (12) 

 𝑑𝑦𝑛

𝑑𝑡
=

1

2ℎ2
[𝑧1

2 − 𝑝𝑐 
2 − ℎ𝑞∗(𝑡) ]2 

with initial conditions 

𝑧𝑖(0) = 1, 𝑖 = 1,2, … , 𝑛,   𝑦𝑛(0) = 0,                                                            (13) 

 

where 𝑧𝑖(𝑡) = 𝑝(𝑥𝑖 , 𝑡),   𝑦𝑛(𝑡) = 𝑦(𝑡), 𝑖 = 1,2, … , 𝑛.  
The system of differential-difference equations (12) is valid for all internal 

nodal points, 𝑥𝑖 =  𝑖ℎ, 𝑖 = 1,2, … , 𝑛,, where ℎ is the step along the spatial 

coordinate.The approximating functional has the form: 

 

𝐹 = 𝑦𝑛(𝑇)                                                                                                                        (14) 

 

Therefore, using the method of straight lines, problem (1), (3) – (7) reduces 

to the optimal control problem for concentrated systems with a free right end [14]. 



 

 

 

 

 
Solution  of  One Problem on Optimum  Gas Well Operation Control 

____________________________________________________________ 

257 

DOI: 10.24818/18423264/54.4.20.16 

Using a priori estimates known for systems of linear ordinary differential 
equations, it is easy to prove that the solution of the differential-difference system 

(12)– (13) converges as ℎ → 0 with the speed 𝑂(ℎ) to the solution of the boundary 

value problem (3) - (6), and functional convergence takes place. 
We write the system of conjugate equations: 
 

𝑑𝜓1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑧1
= − 

𝑧1

ℎ2
[−2𝜓1 + 𝜓2 −  2(𝑧1

2 − 𝑝𝑐 
2 − ℎ𝑞∗(𝑡))𝜑𝑛] , 

𝑑𝜓𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑧𝑖
= − 

𝑧𝑖

ℎ2
[𝜓𝑖−1 − 2𝜓𝑖 + 𝜓𝑖+1], 𝑖 = 2, … , 𝑛 − 1,                        (15) 

 𝑑𝜓𝑛

𝑑𝑡
= −

𝜕𝐻

𝜕𝑧𝑛
= − 

𝑧𝑛

ℎ2
[𝜓𝑛−1 − 𝜓𝑛],

𝑑𝜑𝑛

𝑑𝑡
= −

𝜕𝐻

𝜕𝑦𝑛
= 0 

 
with conditions at the right end  
 

𝜓𝑖(𝑇) = 0,   𝑖 = 1,2, … , 𝑛,      𝜑𝑛(𝑇) = 1,                                           (16) 

where 

𝐻 =
1

2ℎ2
{∑ 𝜓𝑖[𝑧𝑖−1

2 − 2𝑧𝑖
2 + 𝑧𝑖+1

2 ] + 𝜑𝑛[𝑧1
2 − 𝑝𝑐 

2 − ℎ𝑞∗(𝑡) ]2𝑛
𝑖=1 }           (17) 

 
is Hamilton - Pontryagin function of problem (1), (12) – (14). 

Note that the system of equations  (15) – (16) with ordinary derivatives can 

be obtained directly and approximating the boundary value problem conjugate for 

(3) – (6) by the method of straight lines 

 

𝜕𝜓

𝜕𝑡
= −𝑝(𝑥, 𝑡) ∙

𝜕2𝜓

𝜕𝑥2,                                  (18) 

𝜓(𝑥, 𝑇) = 0,   0 ≤ 𝑥 ≤ 1,                                                                                   (19) 

𝜓(0, 𝑡) = −2𝜑(𝑡) [
𝜕𝑝2(0,𝑡)

𝜕𝑥
− 𝑞∗(𝑡)] ,

𝜕𝜓(1,𝑡)

𝜕𝑥
= 0,   0 ≤ 𝑡 < 𝑇 ,                (20) 

𝑑𝜑

𝑑𝑡
= 0,   𝜑(𝑇) = 1,   0 ≤ 𝑡 < 𝑇,                                                    (21) 

 

compiled on the basis of the stated in [21] general approach used in deriving the 

formula for the gradient of functional (7). However, many authors prefer to 
consider the conjugate problem precisely for partial differential equations, since in 

this case the initial distributed system can be solved not only by the method of 

straight lines but also by any numerical methods, in particular, by an implicit 

difference scheme in combination with “walk-through”[21]. 

Considering that 𝜑𝑛(𝑡) ≡ const = 1, from (17) we have:  

 
𝜕𝐻

𝜕𝑝𝑐
=

1

ℎ2
{𝜓1 − 2[ 𝑧1

2 − 𝑝𝑐 
2 − ℎ𝑞∗(𝑡)]}𝑝𝑐                                             (22) 

 
To numerically solve problem (1), (12) - (14), we choose some initial 

control 𝑝𝑐
0(𝑡) that satisfies (1), taking into account the conditions  𝑝𝑐(0) = 1. The 
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Runge – Kutta method solves the Cauchy problem for the system of equations (12) 

– (13) and finds the values of the functions 𝑧𝑖(𝑡), 𝑖 = 1,2, … , 𝑛,  𝑦𝑛(𝑡) in the time 

interval 0 ≤ 𝑡 ≤ 𝑇 and their values are remembered. Then, in the “opposite 

direction” of time, the Cauchy problem for the conjugate system (15) - (16) is 
solved, the coefficients of which are calculated along with the trajectories 

𝑧𝑖(𝑡), 𝑦𝑛(𝑡) and at each step of integration the values 𝜕𝐻 𝜕𝑝𝑐⁄ are found. Further, 

new, improved controls at successive approximations are calculated by the 

formulas 

𝑝𝑐
𝑘+1(𝑡) = {

  𝑝𝑐
𝑘(𝑡) − 𝛿𝑝𝑐

𝑘(𝑡),   if 𝑝1 <  𝑝𝑐
𝑘(𝑡) − 𝛿𝑝𝑐

𝑘(𝑡) < 𝑝2,

𝑝1,                  if  𝑝𝑐
𝑘(𝑡) − 𝛿𝑝𝑐

𝑘(𝑡) ≤ 𝑝1,

𝑝2,                  if  𝑝𝑐
𝑘(𝑡) − 𝛿𝑝𝑐

𝑘(𝑡) ≥ 𝑝2

(23) 

 

taking into account the conditions 𝑝𝑐
𝑘(0) = 1, where  𝛿𝑝𝑐

𝑘(𝑡)is the control 

improvement change, which for a problem with a fixed left end, a free right end 

and in the absence of restrictions is usually constructed according to the scheme 

𝛿𝑝𝑐
𝑘(𝑡) = −𝜆𝑘𝐹′(𝑝𝑐

𝑘(𝑡)).In the paper [10] control is calculated in a special form 

according to the rule 

𝛿𝑝𝑐
𝑘(𝑡) = 𝜆 ∙

𝜕𝐻𝑘(𝑡) 𝜕𝑝𝑐⁄

|𝜕𝐻0 
𝑘(𝑡)/𝜕𝑝𝑐|

 ,    𝑘 = 0,1,2, …                                            (24) 

 

Here 𝑘 is the iteration number, 𝐻0/𝜕𝑝𝑐 is the maximum value for 𝜕𝐻 𝜕𝑝𝑐⁄ , 

taken in absolute value for 0 ≤ 𝑡 ≤ 𝑇, and 𝜆 > 0 is the step size. Depending on the 

selection method, as a rule, various forms of first-order gradient methods are 

obtained. The iterative process (23) – (24) continues until one of the described in 
[21] criteria for ending the count are fulfilled; sometimes the number of iterations 

is predefined. To implement the above scheme, the program is compiled in QBasic.  

The initial values of the parameters, one-dimensional arrays for storing 

function values 𝑝𝑐
0(𝑡), 𝑝𝑐

1(𝑡),  𝑞∗ (𝑡),𝜕𝐻 𝜕𝑝с⁄ , 𝛿𝑝𝑐
𝑘(𝑡) and two two-dimensional 

arrays for solutions of the approximating and conjugate systems are entered in the 

initial lines of the program. In the next lines, the system is approximated, the 

functional values are calculated, and a system of conjugate equations is solved in 

the opposite direction of time. For clarity, the following few lines of the program 
indicate the commands designed to determine the maximum element of the array 

𝜕𝐻 𝜕𝑝с⁄ , calculate the new control 𝑝𝑐
1(𝑡) and print the value of the functional, as 

well as the solution to the approximating system (12) – (13), corresponding to this 
control.  

.................................................. 

370 max = dhdp (0) 
380 for j =1 to n 

390 if max <dhdp (j) then max = dhdp (j) 

400 next j 

495 rem array calculation dp0 (n) 
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510 for j = 0 to n 
520 dp0 (j) = p0 (j) – lambda*dhdp (j)/abs (max) 

530 next j 

540 rem calculation of new control 
545 p1 (0) = 1 

550 for j= 1 to m 

560 if dp0 (j) > p2 then p1 (j) = p2 else if dp0 (j) < p1 then p1 (j) = p1  

      else p1 (j) = dp0 (j)  
570 next j 

580 rem output results 

584 print “k=”; k, “F=”; F, “max=”; max 
586 for j= 0 to m step 2 

587 print “p1 (“; j ;”) =”; p1 (j) 

588 next j 
589 for i = 1 to n 

590 for j = 0 to m step 5 

600 print “z(“;i;”, ; j;”)=”; z(i ,j) 

610 nexi j 
620 next i 

630 rem  determination of the termination of the iteration process  

.............................................. 
Note that in the process of calculations, as the need arises, some lines can 

be added to the program, allowing to trace the correctness of the intermediate 

calculations. 

The calculations were performed for the following parameter values:𝑇 =
0.2, 𝑝1 = 0.2,    𝑝2 = 1.The function 𝑝𝑐

0(𝑡) = 1 − 10𝑡2 was taken for zero 

iteration. The segment 0 ≤ 𝑥 ≤ 1 is divided into five parts with a step ℎ = 0.2. 

The systems of equations (12) – (13) and (15) – (16) are integrated with a constant 

step 𝑡 = 0.01, and the results are output with a step 𝑡 = 0.05. Note that the 

integration of these systems by the Runge - Kutta method with automatic step 

selection is associated with some difficulties. Since the values of the functions 

𝑧𝑖(𝑡) and 𝜓𝑖(𝑡), 𝑖 = 1,2, … , 𝑛 will be calculated at different points, and when 

integrating system (12) – (13) simultaneously with system (15) – (16) from𝑡 = 𝑇 to 

𝑡 = 0 with a constant step, the counting process is often unstable, then the amount 

of computation increases. To check the optimality found by the control formulas 

(23) – (24), in the calculations as  𝑞∗(𝑡) we took   

 
𝜕𝑝2(0,𝑡)

𝜕𝑥
 ≈  

(𝑧1(𝑡))2−(𝑝𝑐
∗ (𝑡))2

ℎ
                                                                            (25) 

 

for a given control 𝑝𝑐
∗(𝑡) = 1 − 4𝑡.  The optimality of 𝑝𝑐

∗(𝑡) is obvious since the 

minimum value of the functional is zero. Note that the found control sequences 

𝑝𝑐
𝑘(𝑡), 𝑘 = 0,1, … with the increasing number of iterations, as can be seen from the 
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above graphs, in the time interval  0 ≤ 𝑡 ≤ 𝑇 approach the given control 𝑝𝑐
∗(𝑡), and 

very precisely coincide with the control 𝑝𝑐
∗(𝑡). The value of the functional at the 

59th iteration turned out to be ≅  6.95854·10–7, and the maximum value of 𝜕𝐻 𝜕𝑝𝑐⁄  

turned out to be ≅ 0.0531. With further iterations, the qualitative picture of the 

results remained practically unchanged. 
 

 
 

Figure 1. Approximately optimal controls during iterations 

 

Figure 1 shows the obtained minimizing control sequences for some 

intermediate iterations, and Table 1 shows the convergence in the functional of the 
iterative process (23) – (24). 

 

Table 1. Convergence in the functional of the iterative process (23) – (24)  

 

 𝑘 𝑦𝑛(𝑇) 𝜕𝐻0/𝜕𝑝𝑐 𝑘 𝑦𝑛(𝑇) 𝜕𝐻0/𝜕𝑝𝑐 

0 

1 
2 

3 

4 
5 

10 

20 

7.5346·10–2 

7.1378·10–2 
6.7571·10–2 

6.3931·10–2 

6.0450·10–2 

5.7115·10–2 

4.2477·10–2 

2.1332·10–2 

17.5683 

16.7488 
16.0118 

15.2946 

14.5811 
13.8980 

10.9297 

6.5220 

30 

40 
50 

55 

56 
57 

58 

59 

8.3990·10–3 

2.0955·10–3 
2.1407·10–4 

2.5792·10–5 

1.4369·10–5 
6.0493·10–6 

2.2042·10–6 

6.9585·10–7 

3.6220 

1.7601 
0.6607 

0.2793 

0.2163 
0.1577 

0.1034 

0.0531 

 

Table 2 shows the calculation results corresponding to the bottomhole 

pressure  𝑝𝑐(𝑡) found according to the scheme (23)– (24). 
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Table 2. The calculation results corresponding to the bottomhole pressure 

 𝒑𝒄(𝒕) found according to the scheme (23) – (24) 

 

𝑡 𝑧0(𝑡) =  𝑝𝑐(𝑡) 𝑧1(𝑡) 𝑧2(𝑡) 𝑧3(𝑡) 𝑧4(𝑡) 𝑧5(𝑡) 

0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.02 0.9188 0.9901 1.0000 1.0000 1.0000 1.0000 

0.04 0.8405 0.9590 0.9928 0.9993 1.0000 1.0000 

0.06 0.7600 0.9209 0.9781 0.9954 0.9993 0.9993 

0.08 0.6801 0.8799 0.9586 0.9879 0.9968 0.9968 

0.10 0.6001 0.8380 0.9362 0.9773 0.9917 0.9917 

0.12 0.5198 0.7961 0.9120 0.9641 0.9840 0.9840 

0.14 0.4403 0.7550 0.8868 0.9489 0.9737 0.9737 

0.16 0.3598 0.7154 0.8611 0.9320 0.9613 0.9613 

0.18 0.2803 0.6778 0.8355 0.9138 0.9470 0.9470 

0.20 0.2008 0.6425 0.8102 0.8948 0.9312 0.9312 

 

According to this table, graphs of changes in gas pressure in the reservoir 
are constructed at different instants of time. Figure 2 shows that the pressure value 

varies greatly in the area of the bottomhole formation zone, and outside this zone, 

the pressure graph is represented by an almost straight line. This is due to a 

violation of the linear law of filtration due to high gas filtration rates in the 
bottomhole formation zone. 

 

 
 

Figure 2. The gas pressure distribution profiles at different instants of time 

corresponding to the pressure  𝒑𝒄(𝒕)found according to scheme (23) – (24) 
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Thus, by controlling the bottomhole pressure  𝑝𝑐(𝑡)within certain limits, it 
is possible to maintain conditions in the region of the bottomhole zone that 

determine the technological mode of gas well operation. 

 

6. Discussion and conclusion 

 

Despite the successes, currently, there are still not sufficiently convincing 

formulations of the problems on regulating the oil and gas fields' development, 

although due to their terms these tasks should be based on the methods of the 

optimal control theory. Undoubtedly, it could be affirmed that optimization 
methods have not found proper application when considering the prospects for 

developing a single field, a group of fields or the prospects for developing the oil 

and gas industry. 
In the present paper, an analysis of the goals and criteria on the problem of 

gas flows’ optimal control in the framework of controlling the bottomhole pressure 

under certain conditions is performed.                                                 

The reasoning the choice of the technological mode of gas well operation is 
carried out. The formalization of the corresponding optimization problem is carried 

out, its reducibility to the problem of systems' optimal control is determined; the 

behavior of such systems can be described by a set of differential equations in 
partial and ordinary derivatives. An approach to its solution with the condition of 

the parameters' distribution is described. 

The studies and analysis of the obtained numerical calculations allow us to 
draw the following conclusions: 

1. Using the Pontryagin’s maximum principle, which is a powerful 

mathematical apparatus, the study of optimal control problems allows us to 
determine the technological mode of gas well operation. 

2. If the solution of the approximating system (12) – (13) with a fixed 

control  𝑝 = 𝑝𝑐(𝑡) converges to the solution of the original boundary value 
problem, then there is always convergence in the functional, and the approximately 

optimal control found in this way is minimizing.  

3. The gradient projection method with a specially selected step, even 
despite the incorrectness of the control problem for systems with quadratic 

functional, does not lead to a tendency to “hopper agitation”, and in a short time 

gives a convergent minimizing sequence in the control space. 

4. For the numerical solution of optimal control problems for nonlinear 
systems with distributed parameters, the use of the straight-line method is very 

effective, since it does not necessitate consideration of the conjugate boundary 

value problems for partial differential equations.  
The results obtained determine the direction for further research, and the 

methods used may be useful for future research not only in the tasks of optimal 

control of gas wells, but also in other processes of designing the development of 
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hydrocarbon deposits. The obtained data and conclusions can be included in studies 
on the development of optimal solutions for controlling gas wells. 
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